
出手即王炸?照片级真实度生成式世界模型,还获得皮克斯和Jeff Dean投资
出手即王炸?照片级真实度生成式世界模型,还获得皮克斯和Jeff Dean投资近段时间,世界模型的相关研究成果正如雨后春笋版不断涌现,光是我们报道过的就已有南大周志华团队的世界模型 Whale、Yann LeCun 团队的世界模型研究、李飞飞 World Labs 的空间智能研究、谷歌的强大世界模型 Genie 2 以及刚刚开源的像是能模拟万物的生成式物理引擎 Genesis。
近段时间,世界模型的相关研究成果正如雨后春笋版不断涌现,光是我们报道过的就已有南大周志华团队的世界模型 Whale、Yann LeCun 团队的世界模型研究、李飞飞 World Labs 的空间智能研究、谷歌的强大世界模型 Genie 2 以及刚刚开源的像是能模拟万物的生成式物理引擎 Genesis。
Yoshua Bengio最近在《金融时报》的专栏文章中表示,「AI可以在说话之前学会思考」,实现内部的深思熟虑将成为AGI道路的里程碑。无独有偶,就在几个月前,Yann LeCun也多次表达过类似的观点。
自从 Sora 横空出世,业界便掀起了一场「视频生成模型到底懂不懂物理规律」的争论。图灵奖得主 Yann LeCun 明确表示,基于文本提示生成的逼真视频并不代表模型真正理解了物理世界。之后更是直言,像 Sora 这样通过生成像素来建模世界的方式注定要失败。
「相比于强化学习(RL),我确实更喜欢模型预测控制(MPC)。至少从 2016 年起,我就一直在强调这一点。强化学习在学习任何新任务时都需要进行极其大量的尝试。相比之下,模型预测控制是零样本的:如果你有一个良好的世界模型和一个良好的任务目标,模型预测控制就可以在不需要任何特定任务学习的情况下解决新任务。这就是规划的魔力。这并不意味着强化学习是无用的,但它的使用应该是最后的手段。」
大模型发展究竟由工程还是科学驱动?
Meta首席人工智能科学家、深度学习之父Yann LeCun又开喷了。
在AI 生成体操面前,「地表最强」Runway和Luma都是输家。
纽约大学计算机科学助理教授、图灵奖得主Yann LeCun的学生Alfredo Canziani开新课了!
最近两天,一篇入选 ACL 2024 的论文《Can Language Models Serve as Text-Based World Simulators?》在社交媒体 X 上引发了热议,就连图灵奖得主 Yann LeCun 也参与了进来。
用卷积能做出一样好的效果。